Cross-lingual Word Clusters for Direct Transfer of Linguistic Structure
نویسندگان
چکیده
It has been established that incorporating word cluster features derived from large unlabeled corpora can significantly improve prediction of linguistic structure. While previous work has focused primarily on English, we extend these results to other languages along two dimensions. First, we show that these results hold true for a number of languages across families. Second, and more interestingly, we provide an algorithm for inducing cross-lingual clusters and we show that features derived from these clusters significantly improve the accuracy of cross-lingual structure prediction. Specifically, we show that by augmenting direct-transfer systems with cross-lingual cluster features, the relative error of delexicalized dependency parsers, trained on English treebanks and transferred to foreign languages, can be reduced by up to 13%. When applying the same method to direct transfer of named-entity recognizers, we observe relative improvements of up to 26%.
منابع مشابه
Adversarial Training for Unsupervised Bilingual Lexicon Induction
Word embeddings are well known to capture linguistic regularities of the language on which they are trained. Researchers also observe that these regularities can transfer across languages. However, previous endeavors to connect separate monolingual word embeddings typically require cross-lingual signals as supervision, either in the form of parallel corpus or seed lexicon. In this work, we show...
متن کاملPredicting Linguistic Structure with Incomplete and Cross-Lingual Supervision
Täckström, O. 2013. Predicting Linguistic Structure with Incomplete and Cross-Lingual Supervision. Acta Universitatis Upsaliensis. Studia Linguistica Upsaliensia 14. xii+215 pp. Uppsala. ISBN 978-91-554-8631-0. Contemporary approaches to natural language processing are predominantly based on statistical machine learning from large amounts of text, which has been manually annotated with the ling...
متن کاملCross-lingual Propagation for Morphological Analysis
Multilingual parallel text corpora provide a powerful means for propagating linguistic knowledge across languages. We present a model which jointly learns linguistic structure for each language while inducing links between them. Our model supports fully symmetrical knowledge transfer, utilizing any combination of supervised and unsupervised data across language barriers. The proposed non-parame...
متن کاملA Distributed Representation-Based Framework for Cross-Lingual Transfer Parsing
This paper investigates the problem of cross-lingual transfer parsing, aiming at inducing dependency parsers for low-resource languages while using only training data from a resource-rich language (e.g., English). Existing model transfer approaches typically don’t include lexical features, which are not transferable across languages. In this paper, we bridge the lexical feature gap by using dis...
متن کاملDocument Representation with Statistical Word Senses in Cross-Lingual Document Clustering
Cross-lingual document clustering is the task of automatically organizing a large collection of multi-lingual documents into a few clusters, depending on their content or topic. It is well known that language barrier and translation ambiguity are two challenging issues for cross-lingual document representation. To this end, we propose to represent cross-lingual documents through statistical wor...
متن کامل